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ABSTRACT

Linear classifiers are well-known to be vulnerable to adversarial
attacks: they may predict incorrect labels for input data that are
adversarially modified with small perturbations. However, this phe-
nomenon has not been properly understood in the context of sketch-
based linear classifiers, typically used in memory-constrained para-
digms, which rely on random projections of the features for model
compression. In this paper, we propose novel Fast-Gradient-Sign
Method (FGSM) attacks for sketched classifiers in full, partial, and
black-box information settings with regards to their internal param-
eters. We perform extensive experiments on the MNIST dataset to
characterize their robustness as a function of perturbation budget.
Our results suggest that, in the full-information setting, these clas-
sifiers are less accurate on unaltered input than their uncompressed
counterparts but just as susceptible to adversarial attacks. But in
more realistic partial and black-box information settings, sketching
improves robustness while having lower memory footprint.
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1 INTRODUCTION

The resource-constrained learning paradigm aims to design classi-
fiers that operate on high-dimensional feature spaces while having
low memory footprint. It finds applications on small appliances
like smart phones where memory-intensive language models for
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speech recognition [13] or computer vision models for facial recog-
nition [11] are required to be trained locally with limited RAM.
In this paradigm, sketching [7] is a useful tool for compression
employed by classifiers to (i) reduce memory footprint by hashing
features to lower dimensions and (ii) maintain accurate weight
estimates of an equivalent (i.e., trained on the same data) uncom-
pressed classifier. However, in many data mining problems such
as frequency estimation [5], heavy hitters [6], and k-means clus-
tering [12], sketches have been shown to be brittle to adversarial
inputs [1, 2, 10]. Similarly, linear classifiers are also well-known to
be susceptible to adversarial data [9, 16, 18]. That is, small perturba-
tions of data points can alter sketch estimates or the predicted labels
of an uncompressed linear classifier. Nonetheless, the sensitivity of
sketched classifiers to adversarial data has not been well studied.
Therefore, our goal is to analyze the extent to which sketching adds
robustness to linear classifiers against small perturbations, if at all,
while offering its original recovery guarantees.

To this end, we focus on a state-of-the-art sketching-based lin-
ear classifier, i.e., the Weight-Median Sketched Classifier [17] (that
we refer to as WM-Sketch for short), as a compressed version of
an online linear classifier (Learner). The WM-Sketch internally
defines an initial random count sketch [5] and then updates it us-
ing gradient descent with a regularized loss function. At inference
time, WM-Sketch predicts labels using either the count sketch
directly or the weights in the original space of Learner recovered
from the count sketch. As shown in [17], for appropriately chosen
dimensions of the sketch matrix, the weights recovered from the
sketched classifier closely approximate the weights of its uncom-
pressed counterpart. This implies that adversarial perturbations
designed for Learner may be adapted for WM-Sketch.

In general, attack algorithms for uncompressed learners can be
broadly classified into three categories namely, (i) gradient-based
attacks such as Fast Gradient-Sign Method [9] (FGSM), (ii) score-
based attacks such as local-search method [14], and (iii) decision-
based attacks such as boundary method [3]. We refer interested
readers to the surveys by Chakraborty et al. [4] and Pitropakis et al.
[15] for further details. In this paper, we focus on characterizing
the robustness of WM-Sketch to FGSM-style adversarial attacks.
This attack shifts the original feature vector by a small distance
so as to position it on the opposite side of the decision boundary
of the classifier being attacked. Generating adversarial examples
in this manner requires a distance measure (e.g., L∞-norm) that
captures the size of the perturbation and complete knowledge of

https://orcid.org/0000-0001-5401-5716
https://orcid.org/0000-0001-8143-1539
https://orcid.org/0000-0002-7661-3917
https://orcid.org/0000-0003-0074-3966
https://doi.org/10.1145/3511808.3557687
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1145/3511808.3557687


CIKM ’22, October 17–21, 2022, Atlanta, GA, USA Ananth Mahadevan, Arpit Merchant, Yanhao Wang, & Michael Mathioudakis

the classifier’s internal parameters such as its weights, learning
rate, etc. which might be a strong assumption in practice.
Our Contributions. For a target WM-Sketch, we define three
adversaries with FGSM-style attack protocols. Depending on the
knowledge each adversary has about the target, the protocol in-
volves choosing a surrogate classifier, crafting a perturbed example
based on the surrogate, and attacking the target with it. First, in the
white-box setting, the adversary knows that the target is a WM-
Sketch and has complete information about the target’s internal
parameters, including its count sketch matrix. Here, the surrogate
is the target itself. Second, in the grey-box setting, the adversary
knows that the target is a WM-Sketch and has complete informa-
tion about all of WM-Sketch’s internal parameters except for the
count sketch matrix. Here, the adversary constructs a surrogate
WM-Sketch classifier with a different sketch matrix. And third, in
the black-box setting, the adversary does not know that the target
is a WM-Sketch and hence has no access to the target’s internal
parameters. Thus, it constructs a Learner as a surrogate. In each
case, the robustness of the target WM-Sketch is quantified by the
accuracy on the adversarial input as a function of the perturbation
budget. Our main contributions include:
• We analytically define FGSM-style attack protocols for WM-

Sketch in the context of the three adversaries discussed above.
• We conduct experiments on MNIST data to empirically quantify

the robustness of WM-Sketch against the three adversaries.
• In the white-box setting, we find that WM-Sketch is just as

susceptible to adversarial attacks as an uncompressed classifier.
• In the grey-box and black-box settings, however, sketching pro-

vides WM-Sketch with improved robustness to adversarial at-
tacks in addition to compression.

2 BACKGROUND: LINEAR CLASSIFIERS

Uncompressed Learner. Let [n] denote the set {1, · · · ,n}. Denote
Learner as an online linear classifier for binary classification. Let
(X,Y) be a stream of data points, where x ∈ X ⊆ Rd is a feature
vector and y ∈ Y = {−1,+1} is the binary label for x. A learning
history of sizeT is a set of labeled data points H =

{(
xt ,yt

)}
t ∈[T ].

The parameters of Learner include (1) the hypothesis space W ⊆

Rd , where ∥W∥2 ≤ D, as well as the hypothesis (also referred to
as weights) wt ∈ W at any time t and (2) a time-decaying learning
rate ηt > 0. Then, a regularized loss function at time t for labeled
data point

(
xt ,yt

)
and hypothesis w ∈ W is defined as

Lt
(
xt ,yt ,w

)
= l

(
yt ·

〈
w, xt

〉)
+
λ

2 ∥w∥2
2 , (1)

where l (·) is any convex, differentiable function and λ is a regular-
ization parameter. Learner’s gradient descent update for labeled
point

(
xt ,yt

)
is defined as

w
t+1 = w

t − ηt∇Lt
(
xt ,yt ,wt ) .

Denote w
∗
H
= arg min

w∈W

∑TH
t=1 L

t (xt ,yt ,w)
as Learner’s opti-

mal hypothesis for history H . At inference time, Learner’s pre-
diction for xt is ŷt = sign

(〈
w
t , xt

〉)
. In this paper, we focus

specifically on the logistic loss function l (a) = − log(σ (a)), where
σ (a) = 1/(1 + exp (−a)). Note that our analyses can also be gener-
alized to other convex, differentiable loss functions.

Sketched Learner. Next, we consider the Weighted-Median Sketc-
hed Learner [17] (WM-Sketch), which maintains a count sketch [5]
over history H and estimates Learner’s optimal hypothesis w∗

H
.

WM-Sketch inherits the parameters ηt , l (·), and λ from Learner
and its other parameters include (1) the size k and depth s of count
sketch, (2) the hypothesis z

t ∈ Z ⊆ Rk , where z
t is the count

sketch at time t arranged as a vector, and (3) a scaled projection
matrix R =

{
−1/

√
s,+1/

√
s
}k×d created using random hash func-

tions hj : [d] → [k/s] and σj : [d] → [−1,+1] for each j ∈ [s]. In
this case, the regularized loss function at time t for

(
xt ,yt

)
and

hypothesis z ∈ Z is defined using feature projection as

L̂t
(
xt ,yt , z

)
= l

(
yt ·

〈
z,Rxt

〉)
+
λ

2 ∥z∥
2
2 . (2)

WM-Sketch’s gradient descent update for
(
xt ,yt

)
is given accord-

ingly as zt+1 = z
t −ηt∇L̂t

(
xt ,yt , zt

)
. Furthermore, WM-Sketch’s

estimate ŵ
t
WM of wt at time t is obtained as

ŵ
t
i = median

{√
sασj (i) z

t
j(k/s)+hj (i)

: j ∈ [s]
}
,

where ŵ
t
i is the i-th weight of ŵt

WM and α =
(
1 − ηtλ

)
is a global

scale parameter. Note that zt ’s index j (k/s)+hj (i) represents the en-
try in Count-Sketch’s j-th row andhj (i)-th column. There are two
ways for the prediction of xt using the sketched learner: (i) weight
recovery, i.e., ŷtWR = sign

(〈
ŵ
t
WM, x

t 〉) , and (ii) feature projection,
i.e., ŷtFP = sign

(〈
z
t ,Rxt

〉)
. WM-Sketch’s optimal hypothesis for

history H of size TH is z
∗
H
= arg min

z∈Z

∑TH
t=1 L̂

t (xt ,yt , z) . As
shown in Theorem 1 of [17], ∥z∗

H
− Rw∗

H
∥2
2 is small. Further, with

high probability over the choice of R, the optimal hypothesis can
be recovered from z

∗
H

from Count-Sketch within an error ϵ , i.e.

EH

[
∥w∗

H
− ŵ

∗
WM∥∞

]
≤ ϵ ∥w∗

H
∥1 (cf. Theorem 2 of [17]), where

the expectation is over a random permutation of data points in the
history H . We use the feature projection ŷtFP in our experiments1.

3 ADVERSARIAL ATTACKS

Our adversarial attacks are motivated by the question: how does
the performance of a given WM-Sketch worsen when attacked by
adversaries operating in the (i) white-box (full), (ii) grey-box (partial),
and (iii) black-box (zero) information settings? We formally specify
an adversary in Section 3.1 and three attack protocols based on the
aforementioned information settings in Section 3.2.

3.1 Adversary

For a target WM-Sketch, an Adversary’s parameters are:
• Budget (δ ) denotes the maximum allowed perturbation of input

point x to obtain a perturbed point x̃, i.e., ∥x̃ − x∥ ≤ δ .
• Knowledge denotes the available information about the target

(also assume the access to the training history H ), namely,
– White-Box (wb): target is a WM-Sketch, and access to all of

the target’s parameters, including the sketching matrix R as
well as s , k , ηt , λ, etc.

– Grey-Box (gb): target is a WM-Sketch, and access to all of the
target’s parameters, except the sketching matrix R.

1The original implementation of [17] uses ŷtWR for both training and prediction.
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(a)

Original
Image

(b)
$

X = 0.10

(c)
$

X = 0.25
Adversary-wb-d

(d)
!

X = 0.10

(e)
!

X = 0.25
Adversary-gb-st

(f)
!

X = 0.10

(g)
$

X = 0.25
Adversary-bb-lt

Figure 1: Illustration of adversarial attacks. The original image is as depicted in Figure (a). In Figures (b)-(c), (d)-(e), and (f)-

(g), we show the perturbed images with budget δ ∈ {0.1, 0.25} by Adversary-wb-d, Adversary-gb-st, and Adversary-bb-lt

targeting a WM-Sketch with k = 16 and s = 2, respectively. Here, “!” and “$” indicate if the prediction is correct or not.

– Black-Box (bb): access only to the target WM-Sketch’s pre-
dicted label ŷFP for x.

The Adversary’s goal is to induce misclassification by finding a
perturbed vector x̃ for a labeled data point (x,y ) given its budget
and knowledge. This implies that the target WM-Sketch predicts
the correct label given x but an incorrect label given x̃. That is,
sign

(〈
z
t ,Rxt

〉)
= yt , but sign

(〈
z
t ,Rx̃t

〉)
, yt .

3.2 Attack Protocols

The Adversary’s attack protocol consists of three steps namely, (i)
choosing a surrogate classifier, (ii) crafting a perturbed point x̃ for
the surrogate, and (iii) attacking the target WM-Sketch with x̃.
(i) Choosing a Surrogate. Based on the Adversary’s Knowledge
(including the training history H ), we have three surrogate options:
• Direct (d): the target WM-Sketch itself, in the white-box setting.
• Sketch Transfer (st): a WM-Sketch trained with the same param-

eters as the target except a different R, in the grey-box setting.
• Learner Transfer (lt): an independently trained Learner, in the

black-box setting.
Formally, we study the following three adversaries: (a) Adversary-
wb-d (White-Box, Direct); (b) Adversary-gb-st (Grey-Box, Sketch
Transfer); and (c) Adversary-bb-lt (Black-Box, Learner Transfer).
(ii) Crafting a Perturbed Point. We focus on Fast-Gradient-Sign-
Method (FGSM)-style attacks [9] for crafting the perturbed point
for the surrogate. The key intuition behind this attack is to shift
input x by a maximum distance δ such that it moves to the opposite
side of the classifier’s decision boundary to induce misclassification.

The L∞-norm FGSM attack for a WM-Sketch parameterized
by R for input (x,y) can be analytically derived as follows. Denote
x̃ = x+r as the perturbed poin. Note, the regularization term λ

2 ∥z∥
2
2

is independent of x̃ (cf. Equation 2). We construct the attack for a
general convex, differentiable loss function l (·) and then instantiate
specifically for logistic loss. Using first order approximation:

l (y · ⟨z,Rx̃⟩) = l (y · ⟨z,Rx⟩) + ∇x̃l (y · ⟨z,Rx⟩)⊤ · r

To compute x̃, the smallest perturbation r within allowed budget δ
which minimizes the loss is obtained as follows:

arg min
r

− ∇x̃l (y · ⟨z,Rx⟩)⊤ · r − l (y · ⟨z,Rx⟩)

s.t. ∥r∥∞ ≤ δ
(3)

Using Hölder’s inequality with ϕ = −∇x̃l (y · ⟨z,Rx⟩), we have

ϕ⊤r ≥ −∥r∥∞∥ϕ∥1 ≥ −δ ∥ϕ∥1

This lower bound for ϕ⊤r is achieved when

r = −δ · sign (ϕ) = −δ · sign (−∇x̃l (y · ⟨z,Rx⟩))

In the case of the logistic loss function, we have

∇x̃l (y · ⟨z,Rx⟩) = −σ (−y · ⟨z,Rx⟩) · yR⊤z

(iii) Attacking the Target. Putting them all together, we have
r = −δ · sign

(
yR⊤z

)
. Then, Adversary-wb-d’s perturbed point is:

x̃wb-d = x − δ · sign
(
yR⊤z

)
(4)

Similarly, Adversary-gb-st perturbes an input point using a
surrogate’s projection matrix R̄ and Count-Sketch z̄ instead of
those of the target WM-Sketch as follows:

x̃gb-st = x − δ · sign
(
y R̄⊤z̄

)
(5)

And finally, Adversary-bb-lt perturbs the input point x based
on a Learner with weights w as follows:

x̃bb-lt = x − δ · sign (yw) (6)

4 EXPERIMENTS

4.1 Experimental Setup

Dataset. We perform our experiments on the MNIST handwritten
digits dataset [8] where the task is to identify a given image as the
digit “3” or “7”. Each image is a 784-dimensional feature vector. We
choose 12,396 and 2,038 images randomly for training and testing,
respectively. For consistency, we randomly permute the training
points to create a fixed history H for all the classifiers.
Classifiers. We train an instance of Learner starting from an
all-zero initial hypothesis with initial learning rate η0 = 0.1 and
regularization parameter λ = 10−6. We set l (·) as the logistic loss
function. We construct WM-Sketch classifiers of four different sizes
k ∈ {8, 16, 32, 64}. Smaller sizes imply higher compression ratios
yet larger errors in estimates. For each size k , we use four sketch
depths s ∈ {1, 2, 4, 8} and corresponding widths k/s . Furthermore,
for each configuration of k and s , we create 20 unique R matrices
with different random seeds. We report the results for WM-Sketch
that uses the feature projection for training and prediction.
Adversaries. We vary δ in the range {0, 0.05, · · · , 0.4}. For Ad-
versary-wb-d, we perturb the test set by δ (cf. Equation 4). For
Adversary-gb-st, we create one perturbed test set per δ for each
of the 20 WM-Sketches parameterized by their R (cf. Equation 5) to
attack the remaining 19 WM-Sketches. And for Adversary-bb-lt,
we perturb the test set by δ according to Equation 6 using Learner
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Figure 2: Accuracy of WM-Sketch with sizes k ∈ {8, 16, 32, 64} for depths s ∈ {1, 2, 4, 8} as a function of budget δ for the per-

turbed input constructed byAdversary-wb-d (dashed lines) andAdversary-gb-st (solid lines) in full and partial information

settings.WM-Sketch is vulnerable against Adversary-wb-d, but compression adds robustness against Adversary-gb-st.
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Figure 3: Accuracy of WM-Sketch classifiers with sizes k ∈ {8, 16, 32, 64} for depths s ∈ {1, 2, 4, 8} as well as Learner (k = 784)
as a function of budget δ for the perturbed input constructed by Adversary-bb-lt. Higher levels of compression provide

increased robustness against adversarial attacks but lower accuracy on unaltered input.

(w) as the surrogate. In Figure 1, we present an illustrated instance
of the original and Adversary perturbed images.

Implementation. We adapt the original C++ implementation of
WM-Sketch by Tai et al. [17]. Our attack protocols are implemented
in Python 3.9. Our code is available here. All experiments were run
on a Linux server with 32 CPU cores and 50GB RAM.

4.2 Results and Analyses

The dashed lines in Figure 2 present the F1-scores of WM-Sketches
when the input data is perturbed by Adversary-wb-d (cf. Equa-
tion 4). The lines in different colors of the same sub-figure denote
the results for WM-Sketches of different sizes (with the same depth
s). While the results for WM-Sketches of different depths are plot-
ted in different sub-figures. WM-Sketch achieves high accuracy on
unperturbed data. However, even with small perturbation budget
δ ≥ 0.05, its accuracy degrades significantly. This implies that WM-
Sketch is just as vulnerable to FGSM-style attacks as Learner.

The solid lines in Figure 2 depict the F1-scores of WM-Sketches
given input data perturbed by Adversary-gb-st (cf. Equation 5).
Lines with error bands represent the average and variance of the
F1-scores on perturbed points obtained from 19 surrogate WM-
Sketches of the same k yet different R’s. The largest WM-Sketch
(k = 64) demonstrates the highest accuracy on unaltered input but
the least robustness compared to smaller sketches as δ increases.

Figure 3 shows the robustness of WM-Sketches as a function
of δ -perturbed input from Adversary-bb-lt (cf. Equation 6). The
purple line confirms that Learner is misled by small perturbations
while WM-Sketches are more robust. A key observation is that
smaller compression levels (e.g., k = 64) lead to lower robustness
but higher accuracy on unaltered input, and vice versa.

5 CONCLUSION

In this paper, we initiate the study of the robustness of sketched
classifiers. Specifically focusing on FGSM-style attacks that we de-
sign for WM-Sketch [17], we find that (i) under full-information
settings about WM-Sketch’s internal parameters, it is as brittle
as uncompressed classifiers to small targeted perturbations, but
(ii) in more realistic partial and black-box information settings, its
random count sketch matrix adds robustness to transfer attacks at
the expense of classification accuracy on unaltered input. Our find-
ings motivate further analysis of sketched classifiers to other attack
paradigms and the design of countermeasures such as adversarial
training, use of robust sketch alternatives, and ensemble methods
to identify better tradeoffs between robustness and accuracy.
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